SUGGESTED ANSWERS AND MARKING SCHEME JOHOR STPM PHYSICS TRIAL EXAMINATION 2009 PAPER 2

	SECTION A	Marke
Question	Suggested Answer	Warks
1. (a)	The Principle of Conservation of Linear Momentum states that the total	
	external force acting on the system.	1
(b)(i)	conservation of linear momentum 2,0 x 10^{-3} x 500 = 1.0 (v) + 2.0 x 10^{-3} x 100	1
	$v = 0.80 \text{ m s}^{-1}$	1
(b)(ii)	Loss in K.E wooden block=work done against constant or average frictional force	
	$\frac{1}{2}(1,0)(0,8)^2 = F_2(0,20)$	1
	$2 \Rightarrow F_n = 1.6 N$	1
2. (a)	image is real	1
(b)	v = 0.25(20) = 5.0 cm	1
	$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{1}{20} + \frac{1}{5.0}$	1
	f = 4.0cm	-
	$\frac{1}{f} = (n-1)(\frac{1}{r_1} + \frac{1}{r_2})$	1
	$\frac{1}{1} - (1.65 - 1)^2$	1
	$\frac{4.0}{r_1} = r_2 = 5.2cm$	1
3. (a)(i)	$f = \frac{1}{T} = \frac{1}{2.5Hz} = 25Hz$	1
781	T = 0.04 angular frequency : (i) = $2\pi f = 157 = 160 \text{ rads}^{-1}$	1
(4)	amplitude, $x_0 = \frac{a_0}{m^2} = \frac{50}{(157)^2} = 2.0x10^{-3}m$	1
	(u))	

960/2 CONFIDENTIAL* 3

SECTION B	
Centripetal force = force that causes a body to move in a circle, and its direction is always towards the centre of the circle.	1
The statement is false.	1
If the two forces balance each other, the resultant force = 0. According to Newton's first law of motion, the body will move in a straight line with constant velocity. That is the body will not perform circular motion.	1
↑ R	
★mg	
Resultant force towards the centreof circle = mg - R	1
Hence mg – R = $\frac{mv^2}{mv^2}$	
For maximum v, $R = 0$	1
$v = rg = 10 \times 9.81 = 98.1 \text{ m s}^{-1}$	1
Newton's Law of gravitation states that the force between two masses is directly proportional to the product of the masses, and is inversely proportional to the square of the distance between them.	1
The gravitational force of attraction is F= G $\frac{Mm}{r^2}$	1
$F = G \frac{Mm}{r^2}; GM = gR^2; r = 2R$	
$F = \frac{gR^2}{4R^2} \times 150$	1
$=\frac{9.81x150}{4}$	22
= 368 N	1
$F = mr\omega^2$	1
$368 = 150 \times 2 \times 6.38 \times 10^6 \omega^2$	
	Centripretal force = force that causes a body to move in a circle, and its direction is always towards the centre of the circle. The statement is false. If the two forces balance each other, the resultant force = 0. According to Newton's first law of motion, the body will move in a straight line with constant velocity. That is the body will not perform circular motion.

	$\omega = 4.38 \times 10^{-4} \text{ rad s}^{-1}$	1
	Period T = $\frac{2\pi}{\omega}$ = 1.435 x 10 ⁴ s.	1
(iii)	$K.E = \frac{1}{2}mv^2 = \frac{1}{2}m(r\omega)^2$	1
	$K.E = \frac{1}{2}(150)(2 \times 6.38 \times 10^6)^2 (4.38 \times 10^{-4})^2 = 2.34 \times 10^9 J$	1

10.(a)	Heat and electric conduction in metals are both caused by the many free electrons that moves with high mobility .	1
	There are no free electrons in thermal and electric insulators.	1
	Thus thermal and electric insulators are poor conductors.	Ť
(b)(i)	Steady state is achieved when the temperatures at all points along the metal rod are stable and not changing.	1
(ii)	Temperature gradient is the difference in temperature per unit length along a conductor.	1
(iii)	Current, $I = \frac{Q}{t} = \frac{1}{\rho} A \frac{V}{l}$,	1
	where: I is the current in the flowing in the conductor, ρ is the resistivity of the material conductor,	
	$\frac{\nu}{l}$ is the potential gradient along the conductor.	1
(c)(i)	rate of heat flow in P=rate of heat flow in Q	1
	$\Rightarrow 4kA\frac{(\theta-0)}{l} = kA\frac{(100-\theta)}{l}$	1
	$\Rightarrow 4\theta = 100 \Rightarrow \theta = \frac{100}{4} = 25^{\circ}C$	1

960/2 CONFIDENTIAL* 5

11.(a)	Supposition of 2 identical waves travelling in opposite direction. Amplitude of both waves are the same or almost the same	1
(b)(i)	Compare to stationary wave equation $y = A \sin \omega t \log \frac{2\pi x}{r}$	
	$\omega = 2\pi f = 250$	1
	$f = \frac{250}{2\pi} = 39.8 = 40 Hz$	1
(ii)	$\frac{2\pi}{\lambda} = 50$	1
	$\lambda = \frac{2\pi}{50} = 0.13m = 13.0cm$	
	distance between 2 neighbouring nodes= $\frac{\lambda}{2} = \frac{13}{2} = 6.5 cm$	1
(iii)	speed of wave, $v = f\lambda = (40)(0.13) = 5.2ms^{-1}$	1
(c)(i)	Interference is the superposition of two coherent waves to produce points of maximum and minimum amplitude/intensity.	1
(ii)	Two conditions for well-defined interference are: -both waves are coherent and same or almost the same amplitude .	2
(d)(i)	Interference at G is constructive interference. Intererence at H is destructive interference.	1

960/2 CONFIDENTIAL* 6

(ii)
$$\frac{1}{2}mv^2 = eV$$

$$v = \sqrt{\frac{2eV}{m}} = \sqrt{\frac{2(1.6 \times 10^{-19})(1400)}{9.1 \times 10^{-31}}} = 2.2 \times 10^5 ms^{-1}$$
(iii) electric force = magnetic force $eE = Bev$

$$B = \frac{E}{v} = \frac{6.2 \times 10^3}{2.2 \times 10^5} = 2.8 \times 10^{-2}T$$
(e)(i) Charge doubled, speed v increased by $\sqrt{2}$ times.
(i) Magnetic force > electric force, ions deflected from original path.
(ii)

13.(a)(i)	The de Broglie's relationship gives the value of the wavelength λ	
	related to a particle of linear momentum p in the equation $\lambda = \frac{h}{p}$	1
	where h is the Planck constant	
(ii)	The wave-particle duality refers to the wave nature of a particle under certain specific conditions and the converse is also true	1
(b)	$\frac{1}{2} mv^2 = 50 (1.60 x. 10^{-19})$	
	$mv = \sqrt{2x50(1.60x10^{-19})m}$	1
	de Broglie wavelength $\lambda = \frac{h}{mv}$	
	$= \frac{6.63 \times 10^{-34}}{mv} = 1.74 \times 10^{-10} \text{ m}; \qquad \text{m}_{\text{e}} = 9.11 \times 10^{-31} \text{ kg}$	1
(c)	Continuous spectrum is produced when fast electrons from the cathode are decelerated on collision with the target. The decrease in energy of the decelerated electrons is radiated as photons in the continuous	
	spectrum.	2
	Characteristic X-ray is produced when a vacancy in the inner shell (e.g. K-shell) of the target atom is filled by an electron from a higher	
	The difference in energy of the electron is radiated as a characteristic X-ray photon.	2

14. (a)Half-life : the time taken for the number of radioactive atoms in a
sample to decay to half of its initial number.1decay constant =
$$-\frac{dN}{dt}$$
1(b)(i) $\frac{226}{88}$ Ra \longrightarrow $\frac{222}{86}$ Rn + $\frac{4}{2}$ He1(ii)Mass defect $\Delta m = 226.025402u - (222.017570 + 4.002603)u$ 1 $= 0.005229 u$ 1Total K.E = $0.005229 x 931$ 1 $= 4.88$ MeV1(c)(i) $\frac{4}{2} \alpha + \frac{9}{4}$ Be \longrightarrow $\frac{12}{6}$ C + $\frac{1}{0}$ X2

(ii)	alpha particle : nucleus of helium	1
	¹ ₀ X : Neutron	1
(iii)	neutron is not charged and does not cause ionization	2
(d)	$\frac{mv^2}{r} = Bqv$	1
	$m = \frac{Bq}{v}r$	1
	Assumption: Ions of the element and ions of C-12 have the same	
	charge, then $m \propto r$ Hence mass number $A \propto r$	6+5
	$A_{x} = \frac{26.2}{22.4} \times 12 = 14$	
	The element is nitrogen, N	1

JABATAN PELAJARAN NEGERI JOHOR STPM TRIAL EXAMINATION 2009 ITEM SPECIFICATION TABLE PHYSICS PAPER 2

No.	Topic	Subtopic	Skill level			No. of	% of
			М	Р	S	question	total question
1.	Dynamics	(a)Conservation of Linear	1				
	a .	Momentum					
		(b)(i)Collision & Momentum		1		3	4.48
		(ii)Work,Energy,Force			1		
2.	Refraction In Thin	(a)Lens & Images	1			_	
	Lens	(b)Lens Formula & Magnification		1	-	3	4.48
		(c)Lens Maker Equation		1			
3	Simple Harmonic	(a)(i)frequency and amplitude	1				
	Motion	(ii)angular frequency	1			4	5.97
		(iii)amplitude		1			
		(b)Displacement-time graph		1	1	-	
4.	Matter & Elasticity	(a)Force-extension graph Elasticity		1		2	2.99
		(b) Young's Modulus	-	1			
5.	D.C Circuit	(a)What is a multiplier	1				
		(b)Function of multiplier	1			3	4.48
		(c)Conversion of			1		
		Galvanometer to voltmeter			1		
6.	Op-Amp	(a)Advantages of Negative Feedback of op-amp	1			4	
		(b)(i) Closed loop gain	1				5.97
		(i) Finding Output Voltage	1				
		(ii)Output-Input Graph		-	1		1 - E
7.	E-M Induction	(a)Process of e/m induction		1			
24		(b)Magnitude of induced emf	1	1		3	4.48
		(c)Direction of induced emf		1		1	
8.	Nuclear Physics	(a)Nuclear fusion reaction	1		-		
		(b)(i)Nuclear reaction equation	1		-	3	4.48
		(ii)Energy released in nuclear reaction		1			
B						1	
9	Circular Motion	(a)Centripetal force	1				
		(b)Centrifugal force		1		8	11.94
-	Gravitation	(c) Maximum speed for circular motion		1			
		(d)(i)Newton's Law of Gravitation	1				
		(ii) Gravitational force and centripetal force	1				
		(e)(i)Satellite in orbit		1	1		
		(ii)Period of satellite in orbit	1				
		(iii)Kinetic energy of satellite		1			

			1.11	1			
10	Thermal Conduction	(a)Mechanism of heat conduction-electron theory		1			
		(b)(i)Steady state and temperature gradient	1				
		(ii)Comparison between thermal and electric conduction	1			6	8.95
		(iii)Rate of heat & electric flow		1			
		(c)(i)Calculation of steady state temperature	-	1			
		(ii) Distribution of temperature for well-lagged composite rod			1		
1	Stationary	(a)Producing stationary waves	1				
	Mechanical Waves	(b)Calculation involving stationary wave equation	1	2			
	Interference	(c)Definition of Interference	1				
	Interference	(ii)Conditions to produce	1			8	11.94
		(d)Young's Double slit Exp.	1				
		(ii)Bright fringe formula		1		10 P.T.	
2	Motion of Charged Particle in electric, magnetic and gravitational fields	(a)Force on charged particles in F B and G fields		1			-
		(b)Electric and gravitational		1		7	
		force on charged particles.	1				
		(ii)Coloulation of mass of ion	1				10.45
		(n)Calculation of mass of ion	1	1			
		(d)(i)Balancing electric and magnetic force in E, B fields					
		(ii)Mutual perpendicular electric and magnetic field as speed selector			1		
		(e)Charge and electric and magnetic force			1		
13	Duality of Matter	(a)Duality Principle	1				
	an an airs a' Ghrannan Christian	(b)De Broglie's wavelength	-	1			
	X-Rays	(c)X-ray production			1		
		(d)X-ray spectrum		1		7	10.45
		(e)Minimum wavelength		1	1		
4	Nuclear Physics	(a)Radioactivity	1		0		
		(b)(i)Radioactive decay equation	1			6	
		(ii)K.E of decay products		1			
		(c)(i)Nuclear equation	1	-			8.95
		(ii)Nuclide & particle identity	1				
		(iii)Properties of particles		1			
		(d)Mass spectrometer			1	1	
		Total	30	27	10	67	100
		%	44.8	40.3	14.9	100	100
		1 7 9	1 1.0		1. 1. 1. 1. 1.		100